Broadcasting fertilizer is a practice commonly used to maximize soil fertility, with advantages for managing the seeding operation early in the spring. However, this practice is detrimental to the efficiency of phosphorus, as it exposes it to either run-off in wet springs or, early tie-up or both. In this post we will examine the factors that can impair or improve phosphorus availability for uptake by plants.
Nitrogen and phosphorus losses can be a big concern for the farmer, both environmentally and economically. Most losses are unintentional, but that doesn’t mean they’re unavoidable. In this post, we will explore how OMEX can help you prevent nitrogen and phosphorus leaching through a nutrient management plan designed to stabilize, reduce losses of N and prevent tie-up of P.
Soil pH is a key factor in farmland as it controls availability of nutrients, microbial activity and crop productivity. Before delving into what causes soils to become acid or alkaline and the steps to take to treat and correct soil pH, we must first establish what is considered an optimal pH for crop production.
Soil pH is a key factor in farmland as it controls availability of nutrients, microbial activity and crop productivity. Before delving into what causes soils to become acid and the steps to take to treat and correct acidic soil, we must first establish what is considered an optimal pH for crop production.
For most prairie crops, a soil pH range of 6.0 to 8.0 is suitable for optimal growth and development. Soils with pH ranging from 5.6 to 6.0 are considered moderately acid, while strongly acid and very strongly acidic soils have pH ranging from 5.1-5.5 to <5.0, respectively. Crops have difficulty establishing and show a decline in productivity and yield in soils with a pH below 6.0.